Showing posts with label Ertel. Show all posts
Showing posts with label Ertel. Show all posts

Wednesday, 17 April 2013

Lubrication Regimes


 Knowledge of the lubrication regimes in which our machines run is essential to choose the best viscosity and type of lubricant with the target to avoid wear and improve energy saving, that is why to know the Stribeck curve is needed.

 To choose the right viscosity for an application is of crucial importance to avoid wear in machines, for this we usually follow the manufacturer recommendations but rarely do we consider parameters as the surface relative speed or the real running temperature. If we are not sure usually we increase the ISO viscosity grade but this does not ensure the wear protection.

 In addition these criteria don’t consider the equipment energy saving which can get worse without to improve the reliability.

 The best way to solve this problem is to know the lubrication regime our machines run, that is why we need to know the Stribeck curve.

 Describe by Richard Stribeck during the first years of the XX century, this Curve provide us an idea of the friction coefficient variation between two surfaces in the function of the lubrication regime. This regime depends on a parameter related to the lubricant viscosity, the surfaces relative speed and the load.



 If we follow the abscissa axis, first we find the boundary lubrication regime in which the friction coefficient is too high due the film is too thin, lower than the surface roughness, so we cannot avoid the wear. If we cannot avoid running in this regime, due to the running temperature, very low relative speed and/or very high load, we must use solid lubricants and pastes. Another option is to increase the lubricant viscosity to move to the next lubrication regime.

 In the mixed lubrication regime, the film thickness is higher, around the surface roughness, so only there are isolated contacts. This regime provides a drastic friction coefficient decrease and we can find a curve minimum, it means is suitable for energy saving. To avoid wear to use anti-wear additives are needed. 

 Both regimes are considered unstable because the increase in the temperature reduces the viscosity and increases the friction, as a result of that the lubrication regime moves to the left of the curve, the area that generates more wear.

 If we increase the viscosity or the relative speed we move to the elastohydrodynamic and hydrodynamic regimes, where we avoid wear because the film thickness is higher than the roughness.



 In the elastohydrodynamic regime, described by Ertel and Grubin and developed by Cheng, Hertzian contacts are found due to very small contact surface and very high load, up to 3.0 GPa, that increase the viscosity of the lubricant, deform both surfaces and reduce the roughness. This lubrication regime is near the minimum of the Stribeck curve, in fact, some authors think the minimum is in this regime, so to keep in this regime increases the energy-saving and reduces wear. Gears, bearings and cams run in this regime.

 In the hydrodynamic regime, the film thickness is much higher than the roughness, due to the relative speed and the viscosity of the lubricant, this is why we avoid the contacts between the surfaces and eliminate wear. This regime is defined by the Reynolds equation. But the Stribeck curve indicates us that this regime increases the friction coefficient due the high viscosity so the energy-saving gets worse, mainly if the relative speed between the surfaces is too high, in this case, we must reduce the viscosity of the lubricant to move closer the minimum of the Stribeck curve. Journal bearings run in this regime.

 We can consider these regimes as stables because any variation of temperature produces a variation of the viscosity and the friction coefficient in the same direction so they stabilize themselves.

Monday, 15 April 2013

Regímenes de Lubricación


 Conocer los regímenes de lubricación en el que trabajan nuestras máquinas es fundamental para escoger la viscosidad y el tipo de lubricante adecuado con el objetivo de evitar desgastes y reducir el consumo energético, para ello es necesario conocer la curva de Stribeck.

 Escoger la viscosidad adecuada para cualquier aplicación resulta de vital importancia para evitar desgastes en las máquinas, esta elección suele realizarse teniendo en cuenta la recomendación del fabricante, pero raras veces se consideran parámetros como la velocidad relativa de las superficies o la temperatura real de trabajo. En caso de duda habitualmente aumentamos el grado de viscosidad ISO, pero esto no garantiza una mejor protección contra el desgaste.

 Además, con estos criterios no tenemos en cuenta el consumo energético del equipo, que se puede incrementar de forma importante sin que eso conlleve un aumento de fiabilidad.

 La mejor manera de solucionar este problema es conocer el régimen de lubricación en el que trabajamos y para ello necesitamos conocer la curva de Stribeck.



 Descrita por Richard Stribeck a principios del siglo XX, esta Curva nos proporciona una visión general de la variación del coeficiente de fricción entre dos superficies en función del régimen de lubricación. Este régimen depende de un parámetro que relaciona la viscosidad del lubricante, la velocidad relativa de las superficies y la carga a la que estas están sometidas.

 Si seguimos el eje horizontal, primero encontramos el denominado régimen de lubricación límite, en él el coeficiente de fricción es muy elevado debido a que la película lubricante es muy fina, inferior a la rugosidad de las superficies, por lo que no podemos evitar el contacto ni el desgaste. Si no podemos evitar trabajar en este régimen de lubricación, debido a las temperaturas de trabajo, velocidades relativas muy bajas y/o cargas muy elevadas, debemos utilizar lubricantes sólidos. La otra opción es aumentar la viscosidad del lubricante para desplazarnos al siguiente régimen de lubricación.

 Este lo denominamos lubricación mixta y en él el grosor de la película lubricante es mayor, aproximadamente igual a la rugosidad de las superficies, por lo que encontramos contactos puntuales. En este régimen se produce una disminución drástica del coeficiente de fricción y podemos encontrar un mínimo de la curva, eso significa que es el más adecuado en términos de eficiencia energética. Para evitar desgastes es necesario utilizar aditivos anti-desgaste adecuados a la aplicación. 

 Estos dos regímenes los consideramos inestables, ya que un aumento de la temperatura reduce la viscosidad y aumenta la fricción lo que multiplica este efecto desplazando el régimen de lubricación a la izquierda, la zona donde se genera mayor desgaste, de la curva.

 Si, por el contrario, aumentamos la viscosidad o la velocidad relativa de las superficies entramos en los regímenes de lubricación elastohidrodinámica e hidrodinámica, en estos casos tenemos garantizada la separación de las superficies debido a que el grosor de la película lubricante es superior a la rugosidad de las superficies, por lo que reducimos el desgaste al mínimo.

 El régimen de lubricación elastohidrodinámica, descrito por Ertel y Grubin y desarrollado por Cheng, se da entre superficies curvas entre las que se producen contacto Hertziano debido que encontramos unas superficies de contacto muy pequeñas y cargas muy elevadas, que traen como consecuencia una presión de contacto extremadamente elevada, alcanzando los 3.0 GPa, que incrementan drásticamente la viscosidad del lubricante y deforman ambas superficies reduciendo la rugosidad. Este régimen de lubricación está muy cerca del mínimo de la curva de Stribeck (algunos autores consideran que, de hecho, el mínimo se encuentra en este régimen) por lo que es interesante situarnos en esta zona para mejorar eficiencia energética a la vez que reducimos desgastes. Es el régimen de lubricación típico de engranajes, rodamientos y levas.



 En el régimen de lubricación hidrodinámica el grosor de la película lubricante es mucho mayor que la rugosidad, debido a la velocidad relativa de las superficies y la viscosidad del lubricante, por lo que evitamos completamente el contacto entre las superficies eliminando desgastes. Este régimen está definido por la ecuación de Reynolds. Sin embargo, la curva de Stribeck nos indica que en este régimen aumenta la fricción debido, precisamente, a la elevada viscosidad del fluido por lo que tiene un aspecto perjudicial para el consumo energético, sobre todo si la velocidad relativa de las superficies es muy elevada, en estos casos podemos reducir la viscosidad del lubricante para acercarnos al mínimo de la curva de Stribeck sin comprometer la protección al desgaste. Es el régimen de lubricación típico de cojinetes.

 Consideramos estos dos regímenes de lubricación estables ya que cualquier variación de temperatura varía la viscosidad y el coeficiente de fricción en el mismo sentido por lo que se estabiliza.